Two-stage Modelling of Arms Trade: Applying Inferential Network Analysis on the Cold War Period

Eva Ziegler
LMU Munich, Geschwister Scholl Institute of Political Science
Co-authors
Michael Lebacher (LMU Munich, Institute for Statistics) Paul Thurner (LMU Munich, Geschwister Scholl Institute) Göran Kauermann (LMU Munich, Institute for Statistics)

Outline

1. Situating the Problem of IAT Research
2. Data
3. Empirical Strategy
4. Results
5. Summary
6. References

International Arms Trade (IAT) - Motivation

1. Modelling for endogenous processes in IAT was neglected.
2. Conceiving IAT in a networked context is paramount.
\triangleright Interdependencies of one trade being dependent on other trades.
3. So far only binary flows have been analysed, never valued flows.

(i) binary flow $=0$

Situating the Problem of IAT Research

International Trade \& Network Analysis

Squartini et al. (2011a) \& (2011b):

- Binary as well as valued networks carry significant amounts of information.
- Derive need to first estimate binary flows before turning to valued flows.

Outline

1. Situating the Problem of IAT Research
2. Data
3. Empirical Strategy
4. Results
5. Summary
6. References

Data

- SIPRI Arms Transfers Database
- All major conventional arms (MCW) trade from 1950 to 1991
- Measured in "Trend Indicator Values" (TIV), equals to transfer of military resources (not financial value)

Data Overview

Arms trade network in 1952

Arms trade network in 1991

Figure 1: International Arms Trade Network 1952, 1991. Eastern Bloc in red, Western Bloc in blue.

Outline

1. Situating the Problem of IAT Research
2. Data
3. Empirical Strategy
4. Results
5. Summary
6. References

1. Stage: ERGM - Binary decision to trade

- Exponential Random Graph Models (ERGMs) can model the structural generation of networks.
- Contains statistics which captures endogenous structures.
- Exogenous covariates that can be sender-specific, receiver-specific or dyad-specific.

$$
P\left(\widetilde{Y}_{t} \mid X_{t}=x_{t}\right)=\frac{\exp \left\{\theta^{T} s\left(\widetilde{Y}_{t}, x_{t}\right)\right\}}{\varkappa(\theta)}
$$

\Rightarrow Probability of a given network over all networks one could have observed.

Specifying the binary model - network statistics

Figure 2: Geometrically weighted outdegree (GWO).
Endogenous Exporter Effect.

Figure 3: Geometrically weighted indegree (GWI).
Endogenous Importer Effect

Specifying the binary model - network statistics

Figure 4: Geometrically weighted dyad Figure 5: Geometrically weighted edge wise shared partner (GWDSP) wise shared partner (GWESP)

Model building 14 | 39

Specifying the binary model - ERGM exogenous covariates

Variable	Description	Source
Economic Quantities		
Log GDP, Sender	Logarithmic GDP of Exporter, 2 year lag	Gleditsch 2013
Log GDP, Receiver	Logarithmic GDP of Importer, 2 year lag	Gleditsch 2013
Log Military expenditure, Receiver	Logarithmic Military expenditure of Importer, 2 year lag	COW Project (2017)
Lagged log Arms Trade	Logarithmic Arms Trade, 1 year lag	SIPRI
Lagged log Goods Trade	Logarithmic Volume of Goods Trade, 1 year lag	Gleditsch 2013
Political Quantities		
Western Bloc	NATO, and US client states	See Paper Annex
Eastern Bloc	Warsaw Pact, and Soviet Union client states	See Paper Annex
Absolute Difference Polity Score	Difference between Scores (-10 to 10)	Polity IV series

2. Stage: Mixed Model - valued flows

- Usually employed in spatial statistics.
- Is conditional on given, binary network.
- Contains both fixed and random effects.
- Delegates network dependencies into the random effects.

Model building

Figure 6: Tradecorrelation in 1952. Colours range from yellow (low values of $\log (y t, i \mathrm{i}))$ to red (high values of $\log (y t, i \mathrm{i}))$.

Flowchart

Figure 7: Depiction of the two stage process for estimating the IAT.

Outline

1. Situating the Problem of IAT Research
2. Data
3. Empirical Strategy
4. Results
5. Summary
6. References

ERGM Results

Figure 8: Negative Value represents a not very dense network.

ERGM Results

Figure 9: Significant \& negative outdegree (GWO). From 1980ies significant \& negative indegree (GWI).

Results

ERGM Results

Figure 10: Significant \& negative GWDSP. Significant \& positive GWESP from 1970ies on.

Results

Network statistics

Figure 11: Negative GWDSP equals to not many indirect trades.

Figure 12: Positive GWESP means triangles defining feature of network.

ERGM Results - exogenous covariates

Figure 13: Log GDP sender i and Log GDP receiver j

ERGM Results - exogenous covariates

Figure 14: Trade within Western Bloc results mixed.
Trade within Eastern Bloc significant \& positive

ERGM Results - exogenous covariates

Figure 15: Lagged logarithmic Arms and Goods Trade positive and significant influence.

ERGM Results

To summarize:
The selection into trade is defined by network dependencies and strategic, political motives.

Results
 Mixed Model results, fixed effects

Figure 16: Log GDP sender i and Log GDP receiver j

Mixed Model results, fixed effects

Figure 17: Within Western Bloc trade, within Eastern Bloc trade

Mixed Model results, Joint estimation

Summary of the fixed effects estimates:

$\log \left(Y_{t, i j}\right)$	Estimate	Std. Error	t -value	$\operatorname{Pr}(>\|\mathrm{t}\|)$
Aircraft/Airdefence	-1.729	0.257	-6.718	0.0000
Armoured Vehicles	-1.635	0.257	-6.348	0.0000
Artillery	-2.120	0.264	-8.040	0.0000
Ships	-0.708	0.259	-2.729	0.0064
Other Equipment	-2.440	0.261	-9.343	0.0000
$\log \left(G D P_{i}\right)$	0.115	0.013	9.128	0.0000
$\log \left(G D P_{j}\right)$	0.155	0.011	13.767	0.0000
$\log \left(\right.$ Military Exp. $\left._{j}\right)$	0.033	0.005	6.494	0.0000
Western Bloc	0.096	0.032	2.997	0.0027
Eastern Bloc $_{\log \left(Y_{t-1, i j}\right)}$	0.651	0.052	12.640	0.0000
$\log \left(\right.$ Trade $\left._{t-1, i j}\right)$	0.511	0.007	73.361	0.0000
\mid polity $_{i}-$ polity $_{j} \mid$	0.004	0.008	0.464	0.6425

Table 1: Result for the Linear Mixed Model, Estimated jointly for 1952-1991.

Mixed Model Results, fixed effects

To summarize:
On the amount stage strategic, political motives compete with the supplier's economic motives.

Mixed Model results, random effects

Summary of the random effects estimates:

		Estimate
Tradecorrelation	ρ	0.2430
Dispersion	τ^{2}	0.6458
Time effects		included as dummy variables
Observations	10,115	
R^{2}	0.86	
h-likelihood	$-21,717.61$	
conditional AIC	$32,954.44$	
marginal AIC	$34,226.80$	

Table 2: Result for the Linear Mixed Model, Estimated jointly for 1952-1991.

Tradecorrelation attributed to sender

Figure 18: Random effects by countries, range from yellow (low) to red (high)

Tradecorrelation attributed to receiver

Figure 19: Random effects by countries, range from yellow (low) to red (high)

Outline

1. Situating the Problem of IAT Research
2. Data
3. Empirical Strategy
4. Results
5. Summary
6. References

Flowchart

Figure 20: Depiction of the two stage process for estimating the IAT.

Main results

1. The binary decision to trade is strongly driven by network effects and shows political considerations (strategic motive).
2. The amount stage suggests that economic considerations then play a bigger role for the decision of how much to trade (economic motive).
3. Flows in Eastern Bloc are higher than expected and in the Western Bloc lower than expected.

Relevant points of the paper

- Idea: Take a network-based approach to analyse IAT.
- Innovation: Use a new approach to estimate the binary as well as valued flows.
- Contribution to IAT literature: Can disentangle between different motives on each stage.

Future research

- A formal economic model to explain decision making on each stage.
- Deeper investigation of dependency structure of trade flows.
- Valued Network model with degree and transitivity measures in valued versions next step.
- Separate Investigation on binary and trade flows.
- Additional research on post Cold War period and Small Arms \& light weapons.

References

- Gleditsch, K. S. Expanded trade and GDP data 2013
- Singer, J. David, Stuart Bremer, and John Stuckey. (1972). "Capability Distribution, Uncertainty, and Major Power War, 1820-1965." in Bruce Russett (ed) Peace, War, and Numbers, Beverly Hills: Sage, 19-48., Version 5
- SIPRI Arms Transfers Database 2017
- Squartini, T., Fagiolo, G., Garlaschelli, D. (2011). Randomizing world trade. I. A binary network analysis. Physical Review E, 84(4), 046117.
- Squartini, T., Fagiolo, G., Garlaschelli, D. (2011). Randomizing world trade. II. A weighted network analysis. Physical Review E, 84(4), 046118.

