ETSG Conference 2017, Florence September 14-16, 2017

Two-stage Modelling of Arms Trade: Applying Inferential Network Analysis on the Cold War Period

Eva Ziegler

LMU Munich, Geschwister Scholl Institute of Political Science

Co-authors

Michael Lebacher (LMU Munich, Institute for Statistics) Paul Thurner (LMU Munich, Geschwister Scholl Institute) Göran Kauermann (LMU Munich, Institute for Statistics)

Outline

1. Situating the Problem of IAT Research

- 2. Data
- 3. Empirical Strategy
- 4. Results
- 5. Summary
- 6. References

International Arms Trade (IAT) - Motivation

- 1. Modelling for endogenous processes in IAT was neglected.
- 2. Conceiving IAT in a networked context is paramount.
 - ▷ Interdependencies of one trade being dependent on other trades.
- 3. So far only binary flows have been analysed, never valued flows.

$$(i) \quad binary flow = 1 \qquad (j) \qquad (i) \quad valued flow = 50 \text{ IV} (j)$$

$$(i) \quad binary flow = 0 \qquad (j) \qquad (i) \quad valued flow = 22 \text{ TIV} (j)$$

International Trade & Network Analysis

Squartini et al. (2011a) & (2011b):

- Binary as well as valued networks carry significant amounts of information.
- Derive need to first estimate binary flows before turning to valued flows.

Outline

- $1. \ \mbox{Situating the Problem of IAT}$ Research
- 2. Data
- 3. Empirical Strategy
- 4. Results
- 5. Summary
- 6. References

Data

- SIPRI Arms Transfers Database
- ▶ All major conventional arms (MCW) trade from 1950 to 1991
- Measured in "Trend Indicator Values" (TIV), equals to transfer of military resources (not financial value)

Data Overview

1970 year

CHN EGY IRN JPN POL DEU IND IRQ other SYR

1980

1960

countries

Import

0 1950

1990

7 | 39

Data Overview -

Arms trade network in 1952

Data Overview

Arms trade network in 1991

Figure 1: International Arms Trade Network 1952, 1991. Eastern Bloc in red, Western Bloc in blue.

Outline

- 1. Situating the Problem of IAT Research
- 2. Data
- 3. Empirical Strategy
- 4. Results
- 5. Summary
- 6. References

10 | 39

1. Stage: ERGM - Binary decision to trade

- Exponential Random Graph Models (ERGMs) can model the structural generation of networks.
- ► Contains statistics which captures endogenous structures.
- Exogenous covariates that can be sender-specific, receiver-specific or dyad-specific.

$$P(\widetilde{Y}_t|X_t = x_t) = \frac{\exp\{\theta^T s(\widetilde{Y}_t, x_t)\}}{\varkappa(\theta)}$$

 \Rightarrow Probability of a given network over all networks one could have observed.

Specifying the binary model - network statistics

Figure 2: Geometrically weighted outdegree (GWO). Endogenous Exporter Effect.

Figure 3: Geometrically weighted indegree (GWI). Endogenous Importer Effect

Specifying the binary model - network statistics

Figure 4: Geometrically weighted dyadFigure 5: Geometrically weighted edgewise shared partner (GWDSP)wise shared partner (GWESP)

Specifying the binary model - ERGM exogenous covariates

Variable	Description	Source	
Economic Quantities			
Log GDP, Sender	Logarithmic GDP of Exporter, 2 year lag	Gleditsch 2013	
Log GDP, Receiver	Logarithmic GDP of Importer, 2 year lag	Gleditsch 2013	
Log Military expenditure, Receiver	Logarithmic Military expenditure of Importer, 2 year lag	COW Project (2017)	
Lagged log Arms Trade	Logarithmic Arms Trade, 1 year lag	SIPRI	
Lagged log Goods Trade	Logarithmic Volume of Goods Trade, 1 year lag	Gleditsch 2013	
Political Quantities			
Western Bloc	NATO, and US client states	See Paper Annex	
Eastern Bloc	Warsaw Pact, and Soviet Union client states	See Paper Annex	
Absolute Difference Polity Score	Difference between Scores (-10 to 10)	Polity IV series	

2. Stage: Mixed Model - valued flows

- ► Usually employed in spatial statistics.
- ▶ Is conditional on given, binary network.
- ► Contains both fixed and random effects.
- ▶ Delegates network dependencies into the random effects.

Model building

16 | 39

Figure 6: Tradecorrelation in 1952. Colours range from yellow (low values of log(yt,ij)) to red (high values of log(yt,ij)).

Flowchart

Figure 7: Depiction of the two stage process for estimating the IAT.

Outline

- 1. Situating the Problem of IAT Research
- 2. Data
- 3. Empirical Strategy
- 4. Results
- 5. Summary
- 6. References

ERGM Results

Figure 8: Negative Value represents a not very dense network.

ERGM Results

Figure 9: Significant & negative outdegree (GWO). From 1980ies significant & negative indegree (GWI).

ERGM Results

Figure 10: Significant & negative GWDSP. Significant & positive GWESP from 1970ies on.

Network statistics

Figure 11: Negative GWDSP equals to not many indirect trades.

Figure 12: Positive GWESP means triangles defining feature of network.

22 | 39

ERGM Results - exogenous covariates

Figure 13: Log GDP sender i and Log GDP receiver j

23 | 39

ERGM Results - exogenous covariates

Figure 14: Trade within Western Bloc results mixed. Trade within Eastern Bloc significant & positive

ERGM Results - exogenous covariates

Figure 15: Lagged logarithmic Arms and Goods Trade positive and significant influence.

Results

26 | 39

ERGM Results

To summarize:

The selection into trade is defined by network dependencies and strategic, political motives.

Mixed Model results, fixed effects

Figure 16: Log GDP sender i and Log GDP receiver j

Mixed Model results, fixed effects

Figure 17: Within Western Bloc trade, within Eastern Bloc trade

Mixed Model results, Joint estimation

$\log(Y_{t,ij})$	Estimate	Std. Error	t-value	Pr(> t)
Aircraft/Airdefence	-1.729	0.257	-6.718	0.0000
Armoured Vehicles	-1.635	0.257	-6.348	0.0000
Artillery	-2.120	0.264	-8.040	0.0000
Ships	-0.708	0.259	-2.729	0.0064
Other Equipment	-2.440	0.261	-9.343	0.0000
$log(GDP_i)$	0.115	0.013	9.128	0.0000
$log(GDP_i)$	0.155	0.011	13.767	0.0000
log(Military Exp.,)	0.033	0.005	6.494	0.0000
Western Bloc	0.096	0.032	2.997	0.0027
Eastern Bloc	0.651	0.052	12.640	0.0000
$\log(Y_{t-1,ij})$	0.511	0.007	73.361	0.0000
$log(Trade_{t-1,ij})$	0.004	0.008	0.464	0.6425
polity _i – polity _j	-0.011	0.002	-5.653	0.0000

Summary of the fixed effects estimates:

Table 1: Result for the Linear Mixed Model, Estimated jointly for 1952-1991.

Mixed Model Results, fixed effects

To summarize:

On the amount stage strategic, political motives compete with the supplier's economic motives.

Mixed Model results, random effects

		Estimate
Tradecorrelation	ρ	0.2430
Dispersion	τ^2	0.6458
Time effects		included as dummy variables
Observations		10,115
R^2		0.86
h-likelihood		-21,717.61
conditional AIC		32,954.44
marginal AIC		34,226.80

Summary of the random effects estimates:

Table 2: Result for the Linear Mixed Model, Estimated jointly for 1952-1991.

Tradecorrelation attributed to sender

Figure 18: Random effects by countries, range from yellow (low) to red (high)

Tradecorrelation attributed to receiver

Figure 19: Random effects by countries, range from yellow (low) to red (high)

33 | 39

Outline

- 1. Situating the Problem of IAT Research
- 2. Data
- 3. Empirical Strategy
- 4. Results
- 5. Summary
- 6. References

Summary

35 | 39

Flowchart

Figure 20: Depiction of the two stage process for estimating the IAT.

Main results

- 1. The binary decision to trade is strongly driven by network effects and shows political considerations (strategic motive).
- 2. The amount stage suggests that economic considerations then play a bigger role for the decision of how much to trade (economic motive).
- 3. Flows in Eastern Bloc are higher than expected and in the Western Bloc lower than expected.

36 39

Relevant points of the paper

- ▶ Idea: Take a network-based approach to analyse IAT.
- Innovation: Use a new approach to estimate the binary as well as valued flows.
- Contribution to IAT literature: Can disentangle between different motives on each stage.

Future research

- A formal economic model to explain decision making on each stage.
- ▶ Deeper investigation of dependency structure of trade flows.
- Valued Network model with degree and transitivity measures in valued versions next step.
- ► Separate Investigation on binary and trade flows.
- Additional research on post Cold War period and Small Arms & light weapons.

References

- ▶ Gleditsch, K. S. Expanded trade and GDP data 2013
- Singer, J. David, Stuart Bremer, and John Stuckey. (1972).
 "Capability Distribution, Uncertainty, and Major Power War, 1820-1965." in Bruce Russett (ed) Peace, War, and Numbers, Beverly Hills: Sage, 19-48., Version 5
- SIPRI Arms Transfers Database 2017
- Squartini, T., Fagiolo, G., Garlaschelli, D. (2011). Randomizing world trade. I. A binary network analysis. Physical Review E, 84(4), 046117.
- Squartini, T., Fagiolo, G., Garlaschelli, D. (2011). Randomizing world trade. II. A weighted network analysis. Physical Review E, 84(4), 046118.

39 39